
6328 J. Am. Chem. Soc. 1991, 113, 6328-6329 

ever, the formation of 3 from 1 does not require such a scheme, 
since nascent "W(NAr)2(NHAr)Cl" could be deprotonated in-
fermolecularly and since the reaction of halide ion with neutral 
"W(NAr)3L" (formed by any reaction sequence) appears facile. 

These experiments underscore the use of highly basic amido 
ligands in a sacrificial sense to effect sequential a hydrogen ab
stractions, a task that is often consigned to carbanion equiva
lents.8'" Of particular interest will be the reactivity of the 
W(=NR)3 functional group if 16-electron, presumably trigo
nal-planar W(NAr)3 can be prepared. 
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The covalent attachment of carboxylic acids is one of the most 
ubiquitous and important posttranslational modifications of 
peptides in vivo.1 In order to better understand the function and 
biochemical significance of such common acylations' as acety-
lation, myristoylation, and palmitoylation, the in vitro synthesis 
of selectively acylated peptides, with the possibility of varying the 
modification sites, should be very helpful. In addition, peptides 
acylated with fatty acids become capable of being anchored to 
liposomes, translocating across lipid membranes, penetrating intact 
cells, and penetrating through the blood-brain barrier.2 However, 
selective acylation is a formidable task to a chemist due to the 
presence of numerous reactive groups in peptides and the com
plexity of the enzymatic systems involved.1 

We report herein a new approach to this problem which is based 
on our finding3 that lipases, when acting in organic solvents, can 
catalyze amide-bond formation. The selectivity of lipases in the 
aminolysis of esters in anhydrous media has been profitably used 
for asymmetric transformations4 and peptide synthesis.5 It is now 
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applied to selective acylation of peptides. 
We prepared,6 as the initial target molecule, the dipeptide 

L-Phe-a-L-Lys-O-f-Bu (1). It has two primary amino groups, the 
a-NHj group of Phe and the «-NH2 group of Lys, and thus offers 
a challenge to selective acylation. This dipeptide (5 /umol) and 
the activated ester trifluoroethyl acetate7 (50 ftmol) were dissolved 
in 1 mL of anhydrous acetonitrile,8 and then 50 mg of one of 15 
commercially available lipases9 was added to each reaction 
mixture, followed by vigorous shaking at 45 0C; the reaction 
progress was monitored by HPLC. After 24 h, in 12 out of 15 
reaction mixtures an appreciable disappearance of 1 was observed; 
in five, the conversion exceeded 50%, and in three, l's HPLC peak 
completely vanished and a new peak appeared. With the three 
lipases affording the complete conversion (those from Pseudo-
monas sp., Aspergillus niger, and Chromobacterium viscosum), 
the reactions were scaled up 10-fold, and the products were purified 
by silica gel chromatography (MeOH/CHCl3, 1:9, as the eluent) 
and identified by 1H NMR. All three enzymatic reactions were 
found10 to result in a single product, TV-e-monoacetyl-l. Thus all 
three lipases are highly efficient and regioselective catalysts of 
acetylation of 1. In contrast, when this dipeptide was subjected 
to chemical acetylation (a slight molar excess of acetic anhydride 
under the same conditions), the product mixture consisted of10 

73% of yV-e-monoacetyl-1, 4% of yV-a-monoacetyl-1, and 23% of 
JV,iV-a,€-diacetyl-l. The lipases' e-regioselectivity is particularly 
impressive considering that the enzymatic acetylation of the a-NH2 
group did not occur even though a large excess of trifluoroethyl 
acetate was still present at the end of the reaction. 

Pseudomonas sp. lipase,11 which afforded complete «-mono-
acetylation of 1 even after a 2-h reaction, was selected for further 
experimentation. It was established that acetonitrile was not a 
unique medium for the lipase-catalyzed acetylation: after 24 h 
the enzymatic reaction was also complete in tert-amyl alcohol, 
tetrahydrofuran, and dichloromethane; significantly, the same 
exquisite regioselectivity was retained in all the solvents. 

The foregoing lipase-catalyzed peptide modification was suc
cessfully applied to acyl moieties other than acetyl: under the 
same experimental conditions as those employed for the acety-
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lation, 1 was fully acylated after a 24-h incubation with tri-
fluoroethyl esters of both longer aliphatic (octanoic, myristic, and 
palmitic) and aromatic (phenylacetic) acids. Analysis of the 
products10 revealed that in all cases only A^-monoacyl-1 com
pounds were formed. 

In order to explain the striking e-specificity of lipase with 1, 
we examined the acetylation of several other peptides in aceto-
nitrile. It was found that L-Ala-a-L-Lys-O-r-Bu had essentially 
the same reactivity as 1 and the product of the enzymatic reaction 
was the N-t-monoacetyl dipeptide. Hence the phenyl ring in 1 
is not responsible for the low reactivity of the a-NH2 group 
compared to t. However, the reactivity of the a-NH2 group in 
L-Phe-NH2 was (i) just 3 times lower than that of the «-NH2 group 
in 1, but (ii) 180 times greater than that of the a-NH2 group in 
L-Phe-O-f-Bu. These data suggest that the lipase is intolerant 
of a bulky main (but not side) chain of the peptide. This factor, 
however, plays no role in the reactivity of the e-NH2 group 
(presumably due to its remoteness from the main chain), for the 
rates of enzymatic acetylation of 1 and of the smaller N-a-
acetyl-L-Lys-NHCH3 were identical. 

Lipase was also found to selectively esterify Ser in a peptide. 
In fact, the acylation of Ser in the model peptide L-Phe-L-Ser-
NH-(3-Naph (2) was even faster than that of Lys in 1: the 
enzymatic conversions in ferf-amyl alcohol (the former peptide 
is insoluble in acetonitrile) after 1.5 h were 98% and 52%, re
spectively. The NMR analysis10 of the product revealed it to be 
exclusively 0-monoacetyl-2, thus pointing to lipase's overwhelming 
preference for Ser's OH vs (chemically more reactive) Phe's NH2 
group.12 The same result was obtained in the preparative en
zymatic palmitoylation of the dipeptide.12 In contrast, chemical 
acetylation with equimolar acetic anhydride yielded approximately 
50% of the 7V,0-diacetyl-2, with the rest being the unreacted 
dipeptide. 

In closing, we have developed a facile methodology for regio-
and chemoselective enzymatic incorporation of various acyl 
moieties into short peptides. We are currently exploring its ex
tension to longer peptides and to proteins. 

(12) Thus allowing for the direct acylation of a hydroxyl group without 
protecting an amino group first. 
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We have recently reported our finding that aryl oxalate de
rivatives are convenient, effective unimolecular photochemical 
sources of aryloxyl radicals.1"3 As a result, it is now possible to 
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explore aspects of aryloxy radical chemistry that were not easily 
probed by the standard solution bimolecular methods for gener
ating such radicals.4 In this paper we report the generation, 
electron spin resonance (ESR) observation, and thermal stability 
of remarkably persistent phenoxyl-phenoxyl ^-radical pairs 
generated by polycrystalline solid-state photolysis of bis(2,6-di-
ter/-butyl-4-methoxyphenyl) oxalate. 

Generation and direct cryogenic observation of radical pairs 
trapped in proximity in the solid state is a well-established phe
nomenon.5 However, radical pairs typically recombine or react 
upon warming, and are not readily kept at room temperature. In 
a case closely related to our work, McRae and Symons6 found 
that 77 K solid-state y radiolysis (but not UV-vis photolysis) of 
diaryl carbonates produced both isolated and triplet-paired phe-
noxyl radicals, which disappeared on warming. 

We found upon quartz-filtered xenon-arc UV-vis photolysis7 

of a powder sample of bis(2,6-di-rer/-butyl-4-methoxyphenyl) 
oxalate 1 at 77 K under vacuum for ca. 3 min, the production 
of a reddish sample having a strong central ESR peak8 with g = 
2.0051, attributable to isolated 2,6-di-terr-butyl-4-methoxyphenyl 
radical (2,6-Bu-4-OMe-Phen). In addition, we were able clearly 
to observe six peaks consistent with the pattern expected for a 
randomly oriented triplet sample having zero-field-splitting (zfs) 
parameters |ZX| = 116 G, \E'\ = 6.0 G, with gxx = 2.0060, gfy = 
2.0057, and g„ = 2.0040. The presence of a AA/S = 2 transition 
in the g = 4 region confirms the presence of a triplet state species, 
which we attribute to interaction of a geminate pair of 2,6-Bu-
4-OMe-Phen radicals, constrained in the crystal matrix of the 
precursor diaryl oxalate (DAO) after double decarbonylation 
(Scheme I). 

The line shape of the triplet ESR spectrum was simulated by 
the method of Kottis and Levebvre9,10 based upon the above values 
and is shown as curve b of Figure 1. The reddish color and g 
values are consistent" with generation of 2,6-Bu-4-OMe-Phen 
radicals. After the sample was annealed to room temperature 
and recooled, spectrum a (Figure 1) changed and a new radi
cal-pair spectrum became evident. An example of the new 
spectrum obtained without a contaminating component of spec
trum a is shown in Figure 1 as spectrum c, characterized by zfs 
parameters \iy\ = 133 G, \E'\ = 6.7 G, with gxx = 2.0060, g„y = 
2.0056, and g2Z = 2.0044 (see simulated curve d). We attribute 
spectrum a to an initially formed geminate radical pair after 
photolysis that upon annealing reorganizes to a more stable 
geometric arrangement in the crystal to give spectrum c, which 
remains stable for days at room temperature under vacuum. The 
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